

1. Show that, if $z^2 = (\bar{z})^2$ and $z \neq 0$, then z is either purely real or purely imaginary.
2. Show that, for any complex numbers z and w , $z\bar{w} + \bar{z}w = 2\operatorname{Re}(z\bar{w})$.
3. Show that, if $z + 1/z$ is real, then either $\operatorname{Im}(z) = 0$ or $|z| = 1$.
4. In each of the following cases, find the curve in the complex plane described by the given equation:
 - (a) $\operatorname{Im}(i + \bar{z}) = 4$
 - (b) $|z - 5| = 6$
 - (c) $\operatorname{Re}(z + 2) = -1$
 - (d) $\operatorname{Re}(i\bar{z}) = 3$
 - (e) $|z + i| = |z - i|$
 - (f) $\operatorname{Im}(1/z) = 3$
5. Under what conditions does $|z + w| = |z| + |w|$?
6. Evaluate $(1+i)^{180}$.